Product life cycle

Phases of product lifecycle and corresponding technologies

Many software solutions have been developed to organize and integrate the different phases of a product's lifecycle. PLM should not be seen as a single software product but a collection of software tools and working methods integrated together to address either single stages of the lifecycle or connect different tasks or manage the whole process. Some software providers cover the whole PLM range while others have a single niche application. Some applications can span many fields of PLM with different modules within the same data model. An overview of the fields within PLM is covered here. The simple classifications do not always fit exactly; many areas overlap and many software products cover more than one area or do not fit easily into one category. It should also not be forgotten that one of the main goals of PLM is to collect knowledge that can be reused for other projects and to coordinate simultaneous concurrent development of many products. It is about business processes, people and methods as much as software application solutions. Although PLM is mainly associated with engineering tasks it also involves marketing activities such as product portfolio management (PPM), particularly with regards to new product development (NPD). There are several life-cycle models in each industry to consider, but most are rather similar. What follows below is one possible life-cycle model; while it emphasizes hardware-oriented products, similar phases would describe any form of product or service, including non-technical or software-based products:[16]

Phase 1: Conceive

Imagine, specify, plan, innovate

The first stage is the definition of the product requirements based on customer, company, market, and regulatory bodies’ viewpoints. From this specification, the product's major technical parameters can be defined. In parallel, the initial concept design work is performed defining the aesthetics of the product together with its main functional aspects. Many different media are used for these processes, from pencil and paper to clay models to 3D CAID computer-aided industrial design software.

In some concepts, the investment of resources into research or analysis-of-options may be included in the conception phase – e.g. bringing the technology to a level of maturity sufficient to move to the next phase. However, life-cycle engineering is iterative. It is always possible that something doesn't work well in any phase enough to back up into a prior phase – perhaps all the way back to conception or research. There are many examples to draw from.

In New Product Development process, this phase collects and evaluates also market risks and technical risks by measuring KPI and scoring model.

Phase 2: Design

Describe, define, develop, test, analyze and validate

This is where the detailed design and development of the product's form starts, progressing to prototype testing, through pilot release to full product launch. It can also involve redesign and ramp for improvement to existing products as well as planned obsolescence.[17] The main tool used for design and development is CAD. This can be simple 2D drawing/drafting or 3D parametric feature-based solid/surface modeling. Such software includes technology such as Hybrid Modeling, Reverse Engineering, KBE (knowledge-based engineering), NDT (Nondestructive testing), and Assembly construction.

This step covers many engineering disciplines including: mechanical, electrical, electronic, software (embedded), and domain-specific, such as architectural, aerospace, automotive, ... Along with the actual creation of geometry, there is the analysis of the components and product assemblies. Simulation, validation, and optimization tasks are carried out using CAE (computer-aided engineering) software either integrated into the CAD package or stand-alone. These are used to perform tasks such as: Stress analysis, FEA (finite element analysis); kinematics; computational fluid dynamics (CFD); and mechanical event simulation (MES). CAQ (computer-aided quality) is used for tasks such as Dimensional tolerance (engineering) analysis. Another task performed at this stage is the sourcing of bought-out components, possibly with the aid of procurement systems.

Phase 3: Realize

Manufacture, make, build, procure, produce, sell and deliver

Once the design of the product's components is complete, the method of manufacturing is defined. This includes CAD tasks such as tool design; including the creation of CNC machining instructions for the product's parts as well as the creation of specific tools to manufacture those parts, using integrated or separate CAM (computer-aided manufacturing) software. This will also involve analysis tools for process simulation of operations such as casting, molding, and die-press forming. Once the manufacturing method has been identified CPM comes into play. This involves CAPE (computer-aided production engineering) or CAP/CAPP (computer-aided production planning) tools for carrying out factory, plant and facility layout, and production simulation e.g. press-line simulation, industrial ergonomics, as well as tool selection management. Once components are manufactured, their geometrical form and size can be checked against the original CAD data with the use of computer-aided inspection equipment and software. Parallel to the engineering tasks, sales product configuration and marketing documentation work takes place. This could include transferring engineering data (geometry and part list data) to a web-based sales configurator and other desktop publishing systems.

Phase 4: Service

Use, operate, maintain, support, sustain, phase-out, retire, recycle and disposal

Another phase of the lifecycle involves managing "in-service" information. This can include providing customers and service engineers with the support and information required for repair and maintenance, as well as waste management or recycling. This can involve the use of tools such as Maintenance, Repair and Operations Management (MRO) software.

An effective service consideration begins during and even prior to product design as an integral part of the product lifecycle management. Service Lifecycle Management (SLM) has critical touchpoints at all phases of the product lifecycle that must be considered. Connecting and enriching a common digital thread will provide enhanced visibility across functions, improve data quality, and minimize costly delays and rework.

There is an end-of-life to every product. Whether it be disposal or destruction of material objects or information, this needs to be carefully considered since it may be legislated and hence not free from ramifications.

Operational upgrades

During the operational phase, a product owner may discover components and consumables which have reached their individual end of life and for which there are Diminishing Manufacturing Sources or Material Shortages (DMSMS), or that the existing product can be enhanced for a wider or emerging user market easier or at less cost than a full redesign. This modernization approach often extends the product lifecycle and delays end-of-life disposal.

All phases: product lifecycle

Communicate, manage and collaborate

None of the above phases should be considered as isolated. In reality, a project does not run sequentially or separated from other product development projects, with information flowing between different people and systems. A major part of PLM is the coordination and management of product definition data. This includes managing engineering changes and release status of components; configuration product variations; document management; planning project resources as well as timescale and risk assessment.

For these tasks data of graphical, textual, and meta nature — such as product Bills Of Materials (BOMs) — needs to be managed. At the engineering departments level, this is the domain of Product Data Management (PDM) software, or at the corporate level Enterprise Data Management (EDM) software; such rigid level distinctions may not be consistently used, however, it is typical to see two or more data management systems within an organization. These systems may also be linked to other corporate systems such as SCM, CRM, and ERP. Associated with these systems are project management systems for project/program planning.

This central role is covered by numerous collaborative product development tools that run throughout the whole lifecycle and across organizations. This requires many technology tools in the areas of conferencing, data sharing, and data translation. This specialized field is referred to as product visualization which includes technologies such as DMU (digital mock-up), immersive virtual digital prototyping (virtual reality), and photo-realistic imaging.

Personal experience and responsibility